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significant friction (or the surface on which the objects move is not level), at
least one object will fail this test, and the system is not functionally isolated.
In the third case, the system participates in strong external interactions
that do ot cancel, but we only look at the system’s momentum just before and
just after a very strong and brief interaction. In physics, a collision is any
process in which the internal interaction between two system objects (1) lasts
only for a short time but (2) delivers to the objects a much larger impulse than
any other interaction during that time. (Note that this definition does nof re-
quire that the objects actually touck during a collision!} If the collision process
is sufficiently brief, external interactions simply do not have time to transfer
significant momentum to the system. So, as long as we look at the system just
before and just after such a “collision,” its total momentum is approximately
conserved. We will describe such a system as being momentarily isolated.

Exercise C5X.3

Two billiard balls collide on a billiard table. According to the definitions pre-
sented above, is the systemn consisting of the two balls functionally isolated,
momentarily isolated, or isolated because it floats in space?

Exercise CHX.4

Two cars skidding on a road hit each other. Can we apply conservation of
momentum to this situation? If so, what justifies treating the cars as an iso-
lated systemn?

A Problem-Solving Framework

Part of the aim of this course is to raise your problem-solving skills from the
level of predigested “plug-and-chug” problems of the type common in high
school physics courses (even advanced-placement courses) to an entirely
new level suited to addressing more realistic problems (exemplified by the
synthetic and rich-context problems in this text). In this section, 1 will give
you a leg up by describing the general problem-solving “framework” that es-
sentially all experts (but few novices) use to solve serious physics problems,
an approach that both research and long experience show to be efficient and
effective in generating correct solutions.

This framework involves completing four main tasks: (1) translating the
problem into mathematical symbols, almost always with the help of a picture;
(2) building a conceptual model of the situation that coherently and logi-
cally links together enough physics equations to solve the problem; (3) work-
ing out an algebraic solution for the quantities to be determined; and
(4) evaluating (checking) results to see that they make sense. Let us look at
each of these tasks in greater detail.

In the translation step, you take the verbal statement of the problem, iden-
tify physical quantities of interest, translate those quantities into mathemati-
cal symbols so that you can link them to equations, and list the quantities
whose values you know. Doing this well prepares you to think more clearly
about the conceptual model in the next step and helps you avoid certain be-
ginner errors (such as using the same symbol for different quantities). One
can do this verbally (e.g., “Let v; be the ball’s initial speed” and so on), but ex-

i . perts know that it is almost always better to define symbols by drawing a
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icture of the situation and labeling the picture’s features with
ois. Pictures are better because (1) human minds are better at pro-
syal relationships than verbal information, so drawing a picture
ize one’s thinking about a problem; (2) for the same reason, defin-
visually makes it much easier for both you and your grader to
etnember those definitions; (3} defining reference frame axes (an es~
in any problem involving vectors) is much more easily done on a
thar in words; and (4) defining symbols on a picture saves time, since
verbal explanations are not needed.
e conceptual model step, you wrestle with essential questions such as
owing: What theories and / or principles apply here? What simplifica-
-/or approximations do I have to make to construct a usable model
tuation? What do I need to know to solve the problem, and how can
e quantities I am not given directly? The goal is to select the equa-
need and develop a coherent and physically reasonable plan for
hem to solve the problem.
part is, in my opindon, by far the most important part of a problem
1; as it involves about 90% of the thinking you do about the physics of
ation. Yet this is the most important problem-solving skill that typical
d-chug problems do not really require and thus do not help you prac-
This step is so important at this stage of your education that I will de-
e entire next section of this chapter to describing a scheme that makes

our job in the algebraic solution step is take the plan you developed in the
ous step and execute it by solving your selected equations symbolically
the quantity or quantities of interest. If the problem requests a numerical
ult; you will then plug known values into the symbolic equation and cal-
te the result, keeping careful track of units throughout the process.

It is important fo solve your equations symbolically before inserting any
ibers (other than zeros or simple unitless integers or fractions}. Some
‘oblems may ask for purely symbolic results, which are often more useful
n numerical results because they clearly display how quantities relate to
¢ another. But even if a problem asks for a numerical result, solving equa-
ons symbolically is still worthwhile because {1) you are much less likely to
ake errors when doing symbolic algebra, (2) using symbols exclusively
akes it much easier for you or your grader to review your work to find er-
tors, and (3) it saves fime, because writing a multidigit number with its re-
tired units usually takes about 5 to 10 times as much effort of writing a
symbol (compare, e.g., writing 2.28 x 10° m/s to writing v). Do not make
exira work for yourself!

~ 1am not saying that you cannot calculate intermediate numerical results
in the process of solving a problem: calculating intermediate results can be
rery helpful when solving complicated problems. What I am saying is this:
: Never do algebra with numbers (unless they are very simple unitless numbers).
- Observing this simple rule will save you endless grief when solving compli-
" cated problems.

~ The evaluation part of the framework is where you thoughtfully assess
whether an equation or numerical result makes sense. Experts do this kind of
assessment continually as they work through a problem, but it is essential to
do it at the end at least.

The most important way to check a result is to Jook for unit consistency:
conceptual and algebraic errors very often lead to unit inconsistencies. For
example, if my final expression for a speed is v = D/v? (where D is a distance
and t is a time) or its numerical value has units of meters per second, then I

The conceptual model step

The algebraic solution step

The conluation step
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know [ have made an error. Long experience has taught me the value of being
constantly aware of units, yet this powerful tool is consistently underutilized
by beginners. [ strongly urge you to (1) attach (appropriate) units to every nu-
merical quantity you write, (2) keep careful track of units when you calculate,
and (3) learn to quickly assess the units implied by symbolic equations.

It is also important to check the signs and magnitudes of numerical results.
For example, if a speed comes out negative or a car ends up with a mass
greater than that of a galaxy, there is an error somewhere. Correct numerical
results also tend to be of the same order of magnitude as known values of the
same kind of quantity appearing in the problem. We will discuss methods of
assessing the validity of symbolic results as we go on in the course.

Experts do some of these steps in their heads, which is fine when you are
an expert. But just as | learned valuable skills as a beginner when my violin
teacher made me think through and write out bowing patterns, you will learn
empowering thinking habits if you consciously practice this expert problem-
solving framework by consciously writing out each step on paper. The worked
examples in the rest of this text will illustrate how to use the framework.

4‘:54 Constructing Model Diagrams

The conceptual modeling step of this framework is challenging because doing
it well involves a number of thinking processes that research suggests begin-
ners find unnatural. For example, experts typically construct a model from
the top down (starting with fundamental physical principles and working to-
ward equations) while novices usually work from the bottom up (starting
from equations having the variables mentioned in the problem and trying
to stitch them together into a coherent whole). Experts are conscious of the
physical meaning and limitations of the equations they use; novices tend not
to be (and thus end up using inappropriate equations). Experts learn to re-
member which symbols represent known quantities, while novices seek to
make this clear by plugging in numbers too early (so that only unknown sym-
bols are left),

This section describes a set of rules for constructing a conceptual model
diagram. Following these simple rules will automatically walk you through
an expertlike thinking process, which in turn will help you solve complicated
problems quickly and accurately. The diagram’s very structure addresses all
the novice difficulties mentioned above.

The rules {which assume that you have completed the translation step)
are as follows:

1. You will almost always begin a conceptual model diagram by drawing
what [ call a helping diagram. A helping diagram is an abstract represen-
tation of the object or system of interest that helps you visualize and
think clearly about conceptual aspects of the system (e.g., internal or ex-
ternal interactions) that are not easy to represent in the more realistic di-
agram you drew for the translation step. Different kinds of problems call
for different kinds of helping diagrams: we will discuss the appropriate
kind of helping diagram for each type of problem as we go along,.

Use the helping diagram to construct a master equation that expresses the
most fundamental physical principle that applies to the problem. If this
is a vector equation, write it in column vector form, and feel free to use
simple definitions (such as § = m7) to express this equation in terms of
symbols you have defined in the translation step. (For example, this
chapter is about applying conservation of momentum, so the master
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equation for any problem in this chapter will be a column vector equa-
tion expressing conservation of momentum.)

3. Above the equation’s equals sign write a brief note explaining what
physical principle the equation expresses and why it applies in this case.
Surround it with a cartoon balloon as if it were spoken by the equals
sign. (The explanation canbe pretty brief. It might read, “CoM: function-
ally isolated,” short for “this equation describes the principle of conser-
vation of momentum, which applies here because the system is func-
tionally isolated.” We will define standard abbreviations such as CoM
for important principles as we go along.}
Look at every symbol in the equation. (a) If you know that its value is
zero or a simple unitless number like 2 or §, draw an arrow through the
symbol and write the value at the arrow’s tip. (b) Draw a slash mark
through any symbols that cancel on both sides of an equation. (c) Check
to see whether the symbol appears on your list of symbols with known
values.

5. Circle any symbols whose values remain unknown after step 4. If such a
symbol appears more than once in your equations, circle only one in-
stance of the symbol and use lines to link that circle to all other instances
of the symbol. Count the circled symbols, and compare to the number of
equations. (Count each meaningful row of a vector equation as a separafe
equation. A row that says 0+ 0 = 0 is not meaningful.) If you have at
least as many independent equations as unknowns, you should be able
to solve the problem, and your model is complete.

6. Otherwise, consider a different equation containing one or more of your
unknowns, carefully assessing whether it applies in this situation (or
whether making a reasonable approximation or assumption would allow
it to apply). If it does, write the equation below the master equation and
draw a line connecting any symbol appearing in the new equation with
the same symbol in previous equations.

Repeat, starting at step 3, until you have enough equations to solve. In

step 3, the equivalence sign = is sufficient explanation for definitions,

but you should attach an explanatory cartoon balloon to the equals sign
of any other equations.

W

3

Occasionally (most often in rich-context problems), you may need to
make an estimate to determine a symbol’s value. If so, treat the equation link-
ing the symbol to its estimated value as just another equation in step 6, and
write “estimated” (along with any appropriate explanation if the estimation is
not trivial) in the equation’s cartoon balloon. You may also encounter known
or unknown quantities that ultimately prove to be irrelevant. Keep focused on
solving for the unknowns that the problem asks you to solve.

You may also need to be flexible in adapting the above rules to specific
problems. If you do something outside the rules, simply explain what you
are doing,.

T also find it very helpful to express vector components (whenever possi-
ble) in terms of symbols representing intrinsically posifive numbers (such as
vector magnitudes or distances). This means that any minus signs associated
with the components get displayed explicitly in the equation instead of being
“buried” inside the symbol. I find that this markedly reduces the number of
sign errors [ make.

If you complete such a diagram well, (1) you will always know which
symbols are known and unknown, (2) you will know without doing any al-
gebra that your model is complete, (3) your “equals sign” notes will have
provided sufficient physical reasoning to support your model, and (4) your
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diagram will essentially tell you how to solve the problem mathematically.
Most importantly, though, you will have followed an expertlike reasoning
process that focuses first on important principles and depends on physical
reasoning to fill in the details.

You can write your conceptual model step in prose instead of construct-
ing a diagram; this is sometimes easier for simple problems. But if you do
write a prose model, make sure that you follow a thinking process like that
you would use to build the diagram, and use complete sentences to describe
the equations you will use and why-they apply in this situation (or what
approximation you are making that allows them to apply). Examples in
this text will typically provide model steps in both diagram and prose form.
Follow your instructor’s advice about which approach to use for your
homework solutions. (I personally recommend that you use conceptual
model diagrams for any homework problem whose number is marked with
an asterisk.)

Solving Conservation of Momentum Problems

The conceptual model diagram for any problem in this chapter will begin
with a helping diagram that we will call an interaction diagram. You can
construct an interaction diagram as follows. Draw a large circle to represent
the system, and draw one rectangular box inside that circle for each object in-
side the system, labeling the box with the object’s name. If the objects inside
the system interact with objects outside the system, draw a box outside the
circle for each relevant object outside the system, and label these boxes as
well. Then draw lines connecting the boxes to represent the internal and ex-
ternal interactions between these objects, and Iabel these lines to indicate the
type of interaction involved. (If the system floats in space, simply write
“floats in space” along the margin of the circle and do not include any exter-
nal gravitational interactions.)

An interaction diagram helps you clearly visualize the system and
sharply distinguish between external and internal interactions. In conserva-
tion of momentum problems we are especially interested in understanding
the external interactions, so that we know what approximations we have to
make to say that the system is isolated.

The master equation for any problem in this chapter will express the law
of conservation of momentum (CoM), which states that a suitably isolated
system’s total momentum before some process of interest is equal to its total
momentuim after that process:

Pri -+ Poi + Pai+ = Py + Pag + Pag +- o (C5.1)

where the subscripts 1, 2, 3, ... refer to the objects in the system and sub-
scripts { and f mean initial and final, respectively. Adapt this equation for the
number of objects in the system in question, use the definition § = m? to
rewrite the momenta in terms of masses and velocities, and writfe it out in
column vector form. Your explanation for the equals sign in this equation
should include this principle’s abbreviation CoM followed by some state-
ment of how this system is isolated (using the categories discussed in sec-
tion C5.2).

The translation step for any conservation of momentum problem should
include all items on the following checklist:

1. Two pictures that show the system in its initial and final states, respec-
7 tively.
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58,2 A 110-kg football player running at 3 m/s collides

head-on with a 55-kg referee by accident. This colli-
sion gives an impulse to the referee at the expense of
the player. Irrespective of how large the impulse is,
how will the magnitude of the change in the referee’s
velocity during the collision compare with that of the
player? Explain carefully.

CSS 3 Imagme that someone places you at rest an a flat, ut-

s terly frictionless surface. You cannot walk to the edge

--of the surface, because your shoes will not grip if. Is
there another way to use those shoes and the law of
conservation of momentum to get off the surface? Ex-
plain your solution.

Imagine that a rocket is launched from an asteroid in

deep space and fires its engines until the speed of the
.. tocket relative to the asteroid is equal to the speed of
- the rocket’s exhaust. The exhaust ejected by the en-
i gine'is now at rest with respect to the asteroid. If the

engmes continue to fire, will the rocket’s speed with
to the asteroid still increase? (If it does, note
"exhaust will now move in the same direchon

stidifig in.a direction 60° north of east

*Ch5.8

“(C55.9
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at 1.5m/s. The pucks collide and stick together. What
is their joint velocity (magnitude and direction) after
the collision?

Two identical hockey pucks slide on a flat, frictionless
plane of ice. Originally, one is sliding in a direction
60° south of west at a speed of 2m/s, while the other
is sliding in a direction 30° west of north at a speed of
2 m/s. The pucks collide and stick together. What is
their joint velocity (magnitude and direction) after
the collision?

Two people slide on a frictionless, flat, horizontal
plane of ice. Person A, whose mass is 54 kg, is sliding
due east at a speed of 2.5 m/s. Person B, whose mass
is 68 kg, is sliding due south at a speed of 1.8 m/s.
These people collide and hold on to each other. What
are the magnitude and direction of their joint velocity
after the collision?

In the All-Alaska Ice Floe Softball finals, the right
fielder for the Nome IceSox (who is floating on a
small chunk of ice in still water) makes an outstand-
ing catch of a line drive. If the combined mass of the
fielder and the ice is 540 kg, and it was traveling due
north at 0.15 m/s (due to the fielder’s frenzied pad-
diing) before the catch, and the ball has a mass of
0.25kg and is traveling at 32 m/s due east when
caught, what is the final heading of the fielder just
after the ball is caught?

A pontoon boat (weight 1200 Ib) sits at rest on a still
lake near a dock. Your friend Dana, whose weight is
160 b, runs off the end of the dock at a speed of
15 mi/h and jumps onto the deck of the boat. Dana
does not know anything about physics and so is sur-
prised that the boat ends up moving away from the
dock. How fast is it moving after Dana lands?

*258,10 During the filming of a certain movie scene, the

director wants a small car (mass 750 kg) traveling
due east at 35 m/s to collide with a small truck (mass
3200 kg) traveling due north. The director also wants
the collision to be arranged so that just afterward the
interlocked vehicles travel straight toward the cam-
era (which is placed at a safe distance, of course). If
the line between the camera and the collision makes
an angle of 29° with respect to north, at what speed
should the trucker drive?

Rich-Context

*50.3

A small asteroid of mass 2.6 x 10° kg is discovered
traveling at a speed of 18 km/s on a direct heading
for Starbase Alpha, which is in deep space well out-
side the solar system. Lacking weapons of sufficient
power to destroy the asteroid, the frightened star-
base inhabitants decide to deflect it by hitting it with
a remote-controlled spaceship. The spaceship has an
empty mass of 25,000 kg and a top speed of 85 km/s




Homewaork Problems

potential energy to be zero if the rock is at ground
level. A person standing at the bottorms of a well
throws the rock vertically upward from 20 m below
ground level. The rock makes it ali theway up to 1 m
below ground level before falling back into the well.
The total energy of the rock-earth system is

A. Negative.

B. Zero.

C. Positive (in this particular case}.

D). Positive because energy is always positive,

E. The answer depends on the rock’s mass.

F. The answer depends on the rock’s initial speed.
T. The answer depends on something else (specify).

 HOMEWORK PROBLEMS. - =

Basic Skills

£6B.1 A car is traveling north at 30 mi/h. A truck having

4 times the mass of the car is traveling at 60 mi/h
west. How many times greater is the truck’s kinetic
energy than the car’s? Explain your reasoning.

A typical arrow might have a mass of 100 g and move
at a speed of about 100 m/s. How does its kinetic en-
ergy compare to that of person weighing 110 Ib run-
ning at a speed of 8.8 mi/h?

Consider an object interacting gravitationally with
the earth. If we move the object from vertical posi-
tion A to vertical position B, we find that the sys-
tem’s gravitational potential energy increases by 10 J.
If we move it from vertical position B to vertical po-
sition C, the system’s potential energy decreases by
5] If we take the system’s reference separation to be
when the object is at position B, what is the system’s
potential energy when the object is at each of the
three points?

Consider a 5-kg object interacting gravitationally
with the earth. Imagine that we set up a standard ref-
erence frame with the z axis pointing vertically up-
ward. If the interaction’s potential energy when the
object ig at z = 5 m is ~50 J, what is the approximate
z-position of the object when it is at its reference sep-
aration from the earth?

Consider a 0.25-kg ball interacting gravitationally
with the earth. Imagine that we set up a reference
frame in standard orientation on the earth’s surface
and define ground level to be the reference separa-
tion and set z = 0 there. Imagine that a person throws
the ball upward into the air and that as the ball leaves
the person’s grasp 2.0 m above the ground, it has a
speed of 12 m/s. What is the system involved here,
and what is its total energy at this time?

Consider a 0.20-kg ball interacting gravitationally
with the earth. Imagine that we set up a reference
frame in standard orientation on the earth’s surface
and define ground level to be the reference separa-
tion and set z = 0 there. Imagine that a person at the

bottom of a well throws the ball upward and that
when the ball leaves the person’s grasp 8.0 m below
the ground, it has a speed of 6 m/s. What is the sys-
tem’s total energy at this time?

Synthetic

The starred problems are especially well suited for practicing
the use of the problem-solving framework and conceptual
model diagrams.

{651 A1000-kgcar travels downaroad at25m /s (55mi/h).
What is its kinetic energy? Now imagine that the car’s
speed increases to 35 m/s (77 mi/h), which is 40%
faster. Is the kinetic energy 40% larger or not? (Note
that the severity of a crash is roughly proportional to
the kinetic energy that participants bring to it.)

Imagine that if you drop an object from a certain
height, its final speed is 20 m/s when if reaches the
ground. If you throw the object vertically downward
from the same height with an initial speed of 20 m/s,
will its final speed be 40 m/s? Carefully explain why
or why not.

A 2.0-kg coconut (initially at rest) falls from the top of
a coconut tree 15 m high. What is the coconut's ki-
netic energy when it hits the ground? What is its
speed?

If a person wanting to dive from a seaside cliff does
not feel safe hitting the water faster than 20 m/s
{44 mi/h), what is the maximum height from which
he or she should dive?

Imagine that you are standing at the top of a cliff 45 m
high overlooking the ocean and you throw a rock
straight downward at a speed of 15 m/s. What is the
rock’s speed when it hits the water?

Imagine that you are throwing a fennis ball at a
Frisbee lodged in a tree 15 m above the ground. Hyou
want the ball’s speed to be at least 5 m/s when it hits
the Frisbee, what should its speed be as it leaves your
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hand? Does your answer depend on the angle that
the ball’s velocity makes with the horizontal when it
leaves yout hand?

Rich-Context
*(CgR.1 You are designing a safety net for use by firefighters
that can safely catch a person jumping from the top of
a 30-story building. What will be the person’s ap-
proximate speed when hitting the net? How much
kinetic energy will the net have 1o convert safely to
other forms? (Make appropriate estimates.)

CoR.2 Injuly 1994, about 20 fragments of comet Shoemaker-
Levy struck the planet Jupiter, each traveling at a

exactly how cataclysmic, though, because the frag-

ments’ sizes {and thus masses) were too small to mea-

sure. One estimate of the total energy released by.
fragment G's impact was 4 x 1077 (equivalent to

the detonation of roughly 100 million typical atomic

bombs). Use this to estimate fragment G's size,

first assuming first that it was solid rock and then

that it was solid ice, which have densities of about

3000 kg/m® and 920 kg/m’, respectively. Don't

worry about being excessively precise. (This illus-
trates how even a lttle knowledge about kinetic en- |
ergy can help answer questions about objects that can

barely be seen by the best telescopes!)

final speed of roughly 60 km/s. These impacis were An infrared image of the fireball created when
closely studied because they promised to be the most fragment G hit Jupiter. The energy releasec by the
cataclysmic impacts ever witnessed. No cne knew impact can be estimated from images like this,

ANSWERS TO EXERCISES

C6X.1 According to chapter C3, 1 N = 1kg-m/s?, so that

ikg’ﬂg/,sz IN Keortn  Mliruck 6 x 10° kg -
! 1,}“/( ¥ ) (lkg-m/s’ ) PN Ko~ Mo 6% 107k (ce20

(C6.19)
Therefore, the earth’s kinetic energy is about
The person’s kinetic energy is 2(50kg}(3my/s)’ = 1072(10°]) = 107" J, which is immeasurably small
225kg-m?/s* = 225], while the car’s kinetic energy is compared io the truck’s energy.
%(EDOOkg)(S{)m/s)Z = 450,000 kg-m?® /5% = 450,0007.
When the two objects have comparable mass {e.g.,
According to the inside front cover, the earth’s mass like repelling magnetic carts on a track), the posi-
is about 6 x 10* kg. Therefore equation C6.6 implies tions of hoth carts change appreciably during the




